
The Pascal Programming Language http://pascal-central.com/ppl/chapter4.html

1 of 8 11/9/07 11:42 AM

The Pascal Programming Language
Bill Catambay, Pascal Developer

Chapter 4

The Pascal Programming Language
by Bill Catambay

Return to Table of Contents

IV. Myths Uncovered

The fast-moving pace of technology and the variety of platforms different compilers
support makes it easy for multiple dialects of the same programming language to
evolve. Although standards exist, compiler vendors have not chosen to comply fully
with them. The result is a variety of Pascal dialects with significant differences in
performance.

Most Pascal compilers on the market support the unextended Pascal standard. Most
support an expanded subset of the Extended Pascal standard. Programmers often
pass judgment on the Pascal language based on their experience with one particular
Pascal dialect, without knowing whether that dialect complies with the standards or
how it compares to other available implementations. In several of the dialogs I've
been involved in over the past ten years on the USENET newsgroups, negative views
of Pascal have been based upon pre-conceptions about the language or bad
experiences with a specific compiler. In most cases, these notions were based upon
myth rather than fact.

Myth 1: C and Pascal Are Basically the Same Language

This comparison has been made quite frequently over the years, yet nothing is
further from the truth. From the compiler's perspective, the Pascal architecture is
much more straightforward. It adheres to stronger type definitions, making
optimizations easier to accomplish. From the programmer's perspective, the nature
of Pascal is inherently different from C in convention, syntax, structure and mindset.

I have converted several C source code projects, and even a few C++ projects, to
Pascal and Object Pascal, and I've seen a variety of coding styles. The process of
converting a C program to a Pascal program provides first hand experience in the
differences between the two languages. In Pascal, declarations must be moved to
the top of a block, and often a lot of investigation is required to decipher many of
the C data structures. During the conversion process, I reorganize the code, changing
and indenting it to make it more readable, so that the actual translation process is
much easier. It's a significant amount of work, however, and in some cases the
difficulty was so extreme that I canceled the task.

The Pascal Programming Language http://pascal-central.com/ppl/chapter4.html

2 of 8 11/9/07 11:42 AM

The point is that while C code can be made readable, it provides loopholes that give
programmers the ability to create chaos. Given the weak typing of the C language,
inconsistency of data use becomes not only a possibility, but a probability. Pascal's
strong typing makes inconsistency of data use far less likely to occur.

Another difference between C and Pascal is the underlying design of the language,
and the intent of that design. C shares APL's penchant for being able to cram a lot
of action into a single expression or line-of-code. This provides a certain "cool"
factor that many programmers appreciate, but it also leads to a bloated and
unreadable code base which can be difficult, at best, to maintain. The extensive
operator overloading and weak-typing architecture increases the odds that a
programmer will get caught up in the "passion" of the moment, indulge every
shortcut, and end up with a maintenance nightmare.

Cultures have sprung up around both languages; cultures reflecting different
attitudes toward getting work done. The culture of Pascal is oriented unapologetically
toward readability in style, elegance of algorithm, and its expression as code. The
culture of C is self-consciously ambitious, yet obfuscatory. This is illustrated quite
well by C. A. R. Hoare in an introduction to the classic paper, An Axiomatic
Definition of the Programming Language Pascal, for the book, Great Papers in
Computer Science. In reference to his goal of designing a better programming
language - one which makes it easier to write correct programs and harder to write
incorrect ones - Hoare writes, "It is a matter of continuing regret that so few
languages have ever been designed to meet that goal, or even to make significant
concessions towards it. For example, the programming language C was designed to
assist in writing a small single-user operating system (UNIX) for a real-time
minicomputer (PDP 11), now thankfully obsolete. For this purpose, its low level of
abstraction and plethora of machine-oriented features are entirely appropriate. For
all other purposes, they are a nuisance. The successful propagation of the language
can be explained by accidental, commercial, historical, and political factors; it is
hardly due to any inherent quality as a tool for the reliable creation of sophisticated
programs."

Myth 2: Pascal is Limited in Power

The biggest myth about Pascal is that it is a language without power. Nothing can be
further from the truth. My personal experience attests to the fact that Pascal is not
only a language designed to encourage well-written and manageable code, but that
it has evolved into a powerful language that supports industrial needs (see About the
Author on page 1) and commercial needs (see
http://pascal-central.com/pascalware.html#Commercial).

One problem with perception is that many look no further than the original
unextended Pascal standard. While a strong language in itself, it does fall short of
supporting more industrial strength needs. Extended Pascal evolved from Pascal to
support industrial, scientific and commercial needs. Extensions to Pascal were
developed by Borland and Apple Computer that provide the language with
object-oriented capabilities.

The so-called "limited power" of Pascal may also refer to the lack of low-level and
machine-oriented features which are inherent in C. It's true that Pascal's design is
not conducive to poking around the machine at a low level, but there are constructs
available within the language that support performance of low-level operations.

The Pascal Programming Language http://pascal-central.com/ppl/chapter4.html

3 of 8 11/9/07 11:42 AM

Low-level hacking may not be encouraged by the language, but it is not prevented
either. Programmers have access to every allowed memory location via the use of
memory pointers. In addition, there are low-level libraries on each platform that
support the access and control of memory and devices. Any language can access
these libraries as long as the call is properly defined. These low-level libraries are
inherently machine-dependent anyway, so direct language support is inappropriate.

Finally, some have the misguided idea that C's inherent low-level nature makes
executables more efficient than ones generated in Pascal. That, too, is a fallacy. The
efficiency of the executable is only as good as the compiler. The truth is that
Pascal's architecture lends itself to easy optimization by a compiler. In a recent
interview, John Reagan, architect of the Compaq Pascal compiler and member of the
X3J9 Pascal Standards Committee, writes, "The strong-typing of Pascal makes it
easier for an optimizer to understand the program and provide better generated
code. That isn't to say it can't be done for C, but it just takes more work."

"The point is that Pascal can produce efficient code and provide the additional
benefit of strong-typing and optional run-time checks. You need not switch from
Pascal to C just to get performance (at least on Compaq's OpenVMS or Tru64 UNIX
platforms where our compiler runs)."

This last statement of is an important point regarding an efficient code compiler: the
performance of a compiler is highly dependent upon the compiler architect.
Unfortunately, while Pascal's design makes optimizations easier to implement in a
compiler, that does not mean that all compiler architects take advantage of it.

To summarize: while the original unextended Pascal may have lacked certain
functionality, fully supported Extended Pascal provides industrial strength power, and
Object Pascal advances the language to support of object-oriented programming.
Furthermore, the nature of Pascal lends itself to easy optimization by a compiler to
produce efficient runtime executables. Finally, as Ingemar Ragnemalm, noted
shareware author and co-author of the book Tricks of the Mac Game Programming
Gurus, once wrote, "I can do everything in Pascal that can be done in C, but in a
more elegant manner."

Myth 3: Pascal Has Weak String Handling Capabilities

The nature of myths makes it ironic that Pascal should be saddled with the same
criticism made of C regarding poor string-handling capabilities. Nothing could be
easier than working with strings in Pascal. String handling capabilities are built into
the language, using the predefined STRING schema type for variable length strings,
and PACKED ARRAY[1..n] OF CHAR for fixed length strings.

The elegance of Pascal strings is that they are so simple to use that there is really
no need to understand how they are handled internally. A string is assigned using
single-quoted text, such as:

myString := 'Strings are simple in Pascal';

Checking for null strings is also simple, with both of the following examples working
equally as well on variable length strings:

1) if myString = '' then
 myString := 'Go 49ers!';

The Pascal Programming Language http://pascal-central.com/ppl/chapter4.html

4 of 8 11/9/07 11:42 AM

2) if length(myString) = 0 then
 myString := 'Go 49ers!';

For fixed-length strings, the length is always the fixed length regardless of the
value, so the first option above would be the way to perform the comparison. The
smaller string is padded with blanks to match the length of the fixed string it is
being compared with.

Locating a string within a string is done simply with an INDEX function:

theIndex := index(myString,'9');

Using the value set for myString above, the results of this INDEX call would result in
a value of 5 for theIndex. Pascal's position of characters in a string starts at one
rather than zero (i.e., the third character is position 3, the fourth character is
position 4, etc.). In some other languages, the first character is position 0, the
second is position 1, etc.. In this regard, Pascal is more intuitive.

Extended Pascal also supports the "+" operator for string concatenation. Therefore, a
string may be constructed as follows:

output_String := 'Employee #' + emp_no + '(' + emp_name +
 ') prefers to program in ' + emp_favorite_language;

Extended Pascal also provides support for reading and writing from strings just like
one would read and write from a file. For example:

Var
 myAge: string(10);
 age: integer;

myAge := '29';
readStr(myAge, age);

The above READSTR call would result with a value of 29 in the integer variable Age.
Likewise:

Var
 outputString: string(100);
 empName: string(30);
 boxes: integer;

empName := 'Jane Doe';
boxes := 298;
writeStr(outputString,'Employee ',empName,' sold ',boxes:1,
 ' boxes of cookies.');

The above would result with the following value for outputString:

Employee Jane Doe sold 298 boxes of cookies.

There are also the predefined string functions of SUBSTR and TRIM, and other useful
string support, all described in the Extended Pascal standard.

The Pascal Programming Language http://pascal-central.com/ppl/chapter4.html

5 of 8 11/9/07 11:42 AM

Myth 4: Pascal Does Not Support Object Oriented Programming

Initially designed and released by Apple Computer in 1986, Object Pascal was
developed as an extension to Pascal to support object-oriented programming. Object
support is incorporated in THINK Pascal, CodeWarrior Pascal, Borland Pascal and
various open source Pascals. As an example, the following code illustrates Object
Pascal under the Codewarrior Pascal dialect (see Figure 8 below).

Program OOP_Sample;

Type
 Employee = object
 firstName: string;
 lastName: string;
 hourlyWage: real;
 Function Pay(hoursWorked: integer): real;
 end;
 ExemptEmployee = object(Employee)
 Function Pay(hoursWorked: integer): real; override;
 end;

Var
 anyEmp: Employee;
 exEmp: ExemptEmployee;

Function Employee.Pay(hoursWorked: integer): real;

 begin (* Pay with deduction for benefits *)
 Pay := hourlyWage * hoursWorked - 100;
 end;

Function ExemptEmployee.Pay(hoursWorked: integer): real;

 begin (* Pay with no deductions *)
 Pay := hourlyWage * hoursWorked;
 end;

begin
new(exEmp);
exEmp.Hire('John','Smith',15);
writeln('As exempt, pay ',exEmp.lastName,' $',exEmp.pay(40):8:2);
new(anyEmp);
anyEmp.Hire('Jane','Doe',15);
writeln('As a regular employee, pay ', anyEmp.lastName,
 ' $', anyEmp.pay(40):8);
end.

Figure 8: Object Pascal Sample

Myth 5: Pascal is Only an Instructional Language

There is no argument with the fact that Pascal is an excellent teaching language. Its
design encourages good programming habits and supports the creation of complex
data structures from simple, well-defined types. However, it is far more than just an
instructional language. Pascal is used in commercial applications as well as in
industrial and scientific environments. Most if not all of what a programmer would
want to do in C and C++ can be done in Extended Pascal and Object Pascal. There

The Pascal Programming Language http://pascal-central.com/ppl/chapter4.html

6 of 8 11/9/07 11:42 AM

are entire systems built upon Compaq Pascal in industrial manufacturing shops, such
as the company I work for, and there are also several commercial desktop
applications which have been written in Pascal. Delphi, a Pascal development system
available on Windows, is extended and object oriented, and is one of the most
popular RAD (Rapid Application Development) systems on the platform. On the
Macintosh platform, CodeWarrior Pascal and THINK Pascal are the most popular.
Figure 9 below is an example of some of the commercial Macintosh applications
written in Pascal.

InterArchy - Full featured and award winning FTP client1.
Ingemar's Skiing Game - Action game2.
Klondike - One of the most popular Solitaire games3.
Autoshare - A full feature listserver and auto-responder4.
Scripter - Top selling development environment for Applescripting5.
SuperLock - File security program6.
FlightMath - Flight analysis program7.
JacqCAD Master - CAD program for Jacquard textile design8.
NIH Image - Image Analysis program for Biomedicine9.

Figure 9: Commercial Quality Pascal Applications

Myth 6: Pascal is Not For Serious Programmers

In 1981, Brian W. Kernighan posted an article on the web, Why Pascal Is Not My
Favorite Programming Language, that criticized Pascal as not being suitable for real
programming tasks and referred to it as a "toy language". One of Kernighan's
introductory comments regarding Pascal said, "Because the language is so impotent,
it must be extended." The paper then exposes the shortcomings of the original
unextended Pascal without mentioning the extensions.

It's relevant to note that the original intent of Pascal was to provide a solid language
suitable for teaching programming - one whose implementations could be both
reliable and efficient on then-available computers. Unextended Pascal was exactly
that language. Early adaptors of Pascal, however, recognized the strengths and
promise of the language and began to use it far beyond its original intent. The
Extended Pascal standard was created to refine the language, to better support these
commercial needs, and to establish Pascal as a language suitable for serious
programmers.

The criticisms in Kernighan's paper have become outdated and mostly irrelevant with
the implementation of Extended Pascal. The paper would not have been mentioned
at all, except that the criticisms contained within the paper are used by many in the
field today against current implementations of Pascal.

The following is a summary of those points, as well as the Pascal extensions which
invalidate them.

1) The size of all arrays are part of its type; therefore, it is not possible
to write general-purpose routines to deal with strings of different sizes.

With the introduction of Extended Pascal, variable length strings

The Pascal Programming Language http://pascal-central.com/ppl/chapter4.html

7 of 8 11/9/07 11:42 AM

were implemented, along with several other powerful string
capabilities (see item 3. String Capabilities).

2) The lack of static variables and variable initialization destroy the
locality of a program.

Variable initialization is included in the Extended Pascal standard
(see item 10. Initial Variable State).

3) The lack of separate compilation impedes the development of large
programs and makes the use of libraries impossible.

Modularity and separate compilation is apart of the Extended
Pascal standard (see item 1. Modularity and Separate
Compilation).

4) The order of logical expression evaluation cannot be controlled, which
leads to convoluted code and extraneous variables.

Short circuit boolean operators are apart of the Extended Pascal
standards (see item 24. Short Circuit Boolean Evaluation).

5) There is no flow control due to the lack of RETURN and BREAK
statements.

Although not in the standards, most current Pascals support
function and control loop exits. In both Compaq and CodeWarrior
Pascals, RETURN will exit a function. In Compaq Pascal,
CONTINUE and BREAK are supported in control loops, and in
CodeWarrior, CYCLE and LEAVE are supported.

6) The CASE statement is emasculated because there is no default
clause.

The Extended Pascal standard now includes an OTHERWISE
clause in CASE statements (see item 14. Case-Statement and
Variant Record Enhancements).

7) The language lacks most of the tools needed for assembling large
programs, most notably file inclusion.

Extended Pascal's modules provide much more sophisticated
support for managing and assembling programs than primitive
file inclusion methods (see item 1. Modularity and Separate
Compilation). With modules, file inclusion is superfluous.

8) There is no escape from Pascal's strong typing controls.

Although not stated in the standards, type casting is supported in
modern Pascal implementations. In Compaq Pascal, "::" is the
casting operator (e.g., myVar::myType). In CodeWarrior Pascal,
casting is implemented using parenthesis (e.g,.
myType(myVar)). The language has evolved without sacrificing
the tremendous benefits of strong typing (see Chapter II. The

The Pascal Programming Language http://pascal-central.com/ppl/chapter4.html

8 of 8 11/9/07 11:42 AM

Pascal Architecture).

Return to Table of Contents Next Chapter

Copyright © 2001 Academic Press. All Rights Reserved.

